IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Magnetic minibands in lateral semiconductor superlattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys.: Condens. Matter 4 7355
(http://iopscience.iop.org/0953-8984/4/36/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 11/05/2010 at 00:30

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

L. Phys.: Condens. Maiter 4 (1992) 7355-7364. Printed in the UK

Magnetic minibands in lateral semiconductor superlattices

Helmut Silberbauer

Institut fiir Theoretische Physik, Universitit Regensburg, D-8400 Regensburg, Federal
Republic of Germany

Received 8 June 1992

Abstract. A new quantum mechanical method for calculating the miniband structure
of lateral surface superlattices in a perpendicular magnetic field is developed. The
Schrodinger equation is solved via expansion in a basis that is well adapted both to the
translational symmetry of the problem and the magpetic field. The approach is quite
similar to the nearly-free-electron appraximation it the zero-field case and is capable of
dealing with arbitrary potential shapes.

1. Introduction

During the past few years advances in submicron lithography have made it possible o
prepare lateral superlattices on the surface of high-mobility two-dimensional electron
systems with Jattice constants of a few hundred nanometres {1]. With mean free paths
of the order of several microns the electrons in these systems may exhibit transport
properties that are due to the periodic potential rather than to processes of scattering
by lattice imperfections. As an additional parameter for transport experiments a mag-
netic field is frequently applied perpendicular to the lateral superlattice. It introduces
the cyclotron length as a characteristic tunable length scale, which in the interpiay
with the Jattice constant is expected to result in typical modifications of the quantum
mechanical properties.

Experimentally lateral superlattices have been fabricated by several groups using
different techniques for imposing different kinds of periodic structures. One limit, the
formation of isclated electron systems confined in all three dimensions, the so-called
‘quantum dots’, is in general well unterstood [2]. But if one alters the experimental
conditions such that the barriers between adjacent dots become lower and the dots get
coupled more complex features are obscrved [3]. Also the complementary situation,
a repulsive potential, leading to ‘anti-dots’, instead of attractive potential ‘islands’ in
the case of the dots, has been realized [4].

The far-infrared experiments [3, 4], which show a characteristic two-peak structure
of dipole-allowed transitions w_ for parabolic quantum dots, exhibit the nature of the
Jateral potential by deviations from this behaviour, Naturally, this can be quite differ-
ent for dot and antidot arrays and may also depend on the preparation of the lateral
structure. Deviations of the magnetoconductivity from the usual sDH-oscillations for
the homogeneous electron system [5] have been interpreted by concepts of non-linear
classical dynamics in the low-field case [6] or by quantum transport due to formation
of subbands within each Landau level in the high-field case [7]. The latter has been
taken as an indication of Hofstadter’s butterfly [8].
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Theoretical studies of electrons subject to both a magnetic field and a periodic
potential have in fact a long history [9]. However, because those studies were directed
towards the more principal aspects of the problem, they have often been based on very
simple shapes of the periodic potential, like V(z,y) = V| cos( Kz) + V, cos( K'y).

Unfortunately the shape of the potential in real systems is not known. Therefore
it seems desirable to have a method applicable to a wide range of different potentials.
The method developed in this paper is capable of dealing with arbitrary shapes of
the periodic potential. The Schrddinger equation is solved by expanding the solution
in a basis of symmetry~-adapted basis functions. Those functions are not the magnetic
Wannier functions, which have often been used in the literature [9], but ejgenfunctions
to the basic magnetotranslations [10] of the lattice.

2. The Hamiltonian

Experimentally, lateral superlattices are often realized by etching and/or gate tech-
niques. The main effect of both techniques is that they alter the energy of the bottom
of the conduction band by surface and/or electrostatic band bending periodically in
the xz—y-plane. This results in a position dependence of the subband energies of
the underlying heterostructure, described by a phenomenological potential V(x,y).
V{=z,y) is periodic, with {; and I, being the primitive translations of the correspond-
ing Bravais lattice B:

Vir+ml, +nl,) = V(r) n, m integer.

By taking this approach,it is assumed that the ¢lectron motion in the z—y-plane
is decoupled from the motion in the z-direction. This assumption is justified if the
lateral potential is weak compared with the confining potential of the heterostructure,
i.e. only the lowest subband due to the z-confinement is occupied. Going beyond
this approximation would require a complete, self-consistent solution of both the
three-dimensional Schrédinger and the Poisson equation with appropriate boundary
conditions, e.g. for a gate. This has been done for a single isolated quantum dot [11],
but is at present numerically too difficult for periodic structures.

Moreover the electron spin and all band structure effects beyond the effective
mass approximation are neglected. Thus lateral superlattices are described by the
Hamiltonian

H=(1/2m*)(p+ (e/c)A) + V(z,y). (1)

The magnetic field is applied perpendicular to the electron plane and the sym-
metric gauge for the vector potential is used:

A=(B/2)(_y!ms0)' (2)

Finally all lengths are normalized with respect to the cyclotron length (A, = 1)
and by introducing the usual inter- and intra-Landau-level ladder operators o and b,
the Hamiltonian may be written as

H = hwl(ale + 1) + V(a,b). 3)

The dependence of the potential on the b-operator indicates the removal of the
Landau level degeneracy due to the lateral superlattice.
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3. Magnetotranslations

In the presence of a magnetic field, translations in the z—y-plane do not commute
with the kinetic energy operator, But if the field is homogeneous, they obviously map
the physical system back onto itself, and in fact they are just gauge transformations.
To get an operator which represents that symmetry by commuting with the kinetic
energy, one has to compose a translation with the inverse of the corresponding gauge
transformation:

S(R) = exp((1/V2){R*b - Rb")) = exp((i/2)(R x ) - 2)T(R)
with T(R)%(r) = ¥(r + R). 4

The unitary operators S are called magnetotransiations and have been discussed
in detail elsewhere [10].

In general magnetotranslations, in contrast to ordinary translations, do not com-
mute with each other. One easily shows the relation

[S(R,),S(R,)) =0<<= |R, x R)| =27u with v integer.  (5)

Physically u counts the number of flux quanta through the parallelogram defined
by R, and R2,. For a superlattice system with basic translations I, and {, this means
that we have to restrict ourselves to magnetic fields, which fulfil (in SI units)

B ={r/(ell; x ,])]g with g, integer. (6)

In practice this is not very restricting, because for usual lattice parameters the
spacing between allowed field values is small and can be made smaller by choosing a
larger unit cell instead of the elementary cell of the lattice.

Now one can establish the commutation relations for the basic magnetotransla-
tions of the lattice:

[$(8), ()] = [S(4), H] = [S(L,), H] = 0. M

Because of the unitarity of the magnetotranslations, all eigenvalues are of modulus
one and the eigenvalue equations may be written as

S(Ipv =€y S(,)p =y, ®)

Because of (7) they can be solved simultancously and the solutions for fixed ©,
and ©, form a Hilbert space H(9,, ©,). Since the two primitive magnetotranslations
commute with the Hamiltonian, the eigenfunctions of the Hamiltonian can be chosen
in such a way that they belong to one of the H(&,, ©,). Therefore it is sufficient to
solve the Schrédinger equation in each Hilbert space H(©,, ©,) separately. The two
phases ©, and ©, play a role analogous to the k-vector in the zero-field case. Energy
levels exhibit a two-dimensional dispersion E(©,,@,) . Obviously it is sufficient to
restrict the range of ©, and @, to the interval [—=, =], the first quasi-Brillouin zone.
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4. Symmetry-adapted functions

We look for a basis of H(®,,©,), where all elements are also eigenfunctions of
the kinetic part of the Hamiltonian (3). This basis is then well adapted both to the
translational symmetry and the presence of a magnetic field in the problem.

We use the set of functions proposed by Ferrari [12]. The integer g, defined in
equation (6) has to be factored into g; = pg. Then a finer lattice than the original
Bravais lattice is defined by

c=1/p and d=1,/q.

In this finer lattice the magnetic flux through onc unit cell is precisely one flux
quantum. We further define

mri(r) = (pg)"M2 Y [S(@e HIMS(d)e "8, (7)) (9)

with

p=(1/p)(6, + 27n,) and v=(1/q)(8; + 27n,)
n, €, ={0,...,p—1} and n, €I, ={0,...,¢-1}
n. €{0,1,2,3,...}.

®a, is a Landau eigenfunction defined by atag, = ny é, and be, =0.
Since magnetotranslations only involve the b ladder operators, ¢7.1"2 is also an
eigenfunction of the number operator a'a:

ala qbﬂhﬂ: =n qb‘ﬂh‘n: (10)

and thercfore of the kinetic enerpgy.

The functions ¢3:+"2 form a complete, orthogonal set of functions in H{9,,9,),
provided that (x,v) # (=, «) for all (n,,n,) € I, x I,. Their norm may easily be
evaluated as

|pnim2||? = Z (—1)*™e 'fﬂm+*’")exp(-l|nc+md]2) (11)

M n=—00

By defining

1/)111}7&: - H‘i’““n“n_lﬁbu"ﬂ’

an orthonormal basis in H(©,,©,) has been found.
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5. Solution of the Schridinger equation

The Schridinger equation is solved by expanding the solutions in the basis {y21™2}
in H(©,,©,). The numerical crucial point in this method is the evaluation of the
matrix elements of the periodic potential in the given basis. This has been done to
a great extent analytically, thus reducing the integration to summations of rapidly
convergent series.

To take full advantage of the translational symmetry, the periodic potential is
expanded in a Fourier series

V(R)= ) w(G)eSR

GER
where R is the reciprocal lattice to B. What is then left to do is to calculate the matrix
elements {n}, n}, nt el ®|n,, n,,n.), where G is a reciprocal-lattice vector. After
some algebra it becomes clear that these matrix ¢lements vanish, unless there exist

two integers M and N for which the following relations hold (G = G g, + G, 4,
with §,, g, primitive translations of R):

Gy =nj—n,— Mp (12)
G,=ny—n,— Ng. (13)
The non-vanishing matrix clements evaluate to
I I ! | LG
(nlanzsnLle ln1=n2an‘L)

= o 1ons —(/alGP 1,1 1
=GN (G) Tz (G)e™WIIGT f(jloni ™2 e ™)

RL

with
+o0
Tr?},fi’(c) — Z (_1)Aﬂei(u'!\+v'ﬂ)e(i,lz)G(Ac-s-ﬂd)‘e—(l/4)|Ac+nd|° . (14)
A==
and
Gn'm(G) _ ,/mlln!e-(ll-'-mG'[i(iG.«/ﬁ)n—m L;—m(l@'[?/z) . nzm
Jrl mle=(WDIGE (1G //2ym=n L= (|G2/2) : m>n.

In the above equations complex notation is used for two-dimensional vectors.

6. Results and discussion

To show the flexibility of the method, calculations for threc different systems have
been done. The model potentials, shown in figure 1, are chosen in such a way that



7360 H Silberbauer

Figure 1. Effective potentials used for
modelling arrays of (a) isolated quan-
tum dots, (b) coupled quantum dots and
(c) antidots. One elemenary cell of the
quadratic lattice is shown, the lattice con-
stant is taken to be 500 nm, the potential
depth 5 meV. In (¢) the ratio (;f antidot

diameter to lattice constant is %.

the systems may be regarded as arrays of isolated quantum dots, weakly coupled
quantum dots and antidots, respectively.

For the calculations the effective mass of GaAs (m* = 0.0665), a quadratic unit
cell for the lattice with side length e = 500 nm and a potential depth V, of 5 meV
have been used. These assumptions are realistic in shallow mesa-etched samples [13].

For the isolated quantum dots (figure 1(a)) the miniband structure for three values
of the magnetic field has been calculated and the results ar¢ shown in figure 2. For
low magnetic fields the spectrum consists of some discrete levels below the lowest
2D Landau level and a quasi-continuous spectrum above. This is consistent with the
results obtained by using a split operator technique on the solution of the time-
dependent Schrodinger equation [14],

The discrete levels correspond to the energy levels of a strictly parabolic dot with
the same curvature in the minimum. They exhibit no dispersion in ®, because they
are closely bound in the dot and the wavefunctions of electrons in adjacent dots
do not overlap. For the minibands in the quasi-continuum, however, dispersion is
clearly observed at low fields. Their eigenstates are extended, due to overlap between
neighbouring cells.

At higher magnetic fields the levels in the quasi-continuum cluster nearer and
nearer to the 2D Landau levels. This is due to reduced Landau level mixing because
of the wider spacing between adjacent Landau levels and increasing localization of
the electrons in the magnetic field, which leaves more and more states in regions
unaffected by the potential. Increasing localization resulting in a decrease of the
overlap between neighbouring cells is also responsible for the vanishing dispersion at
higher fields.

The dependence of the energy levels on the magnetic field for a fixed point near
the I"-point of the quasi-Brillouin zone is plotted in figure 3. In this plot one clearly
sees the dot like behaviour of the discrete states and the clustering of the quasi-
continuous level spectrum near the 2D Landau levels. At higher magnetic fields the
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Figure 2. Magnetic minibands for the isolated dot
system at three different values of the magnetic
field. The dispersion is plotted along the @;-axis
in the 2D quasi-Brillouin zone. To the left are
the energy levels of a parabolic dot with the same
curvature in the minimum plotted, to the right the
Landau levels for V = 0.
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Figure 3. Magnetic field dependence of the energy
levels of the isolated dot system at a fixed point
(©1 = ©2 = 0.3) near the I"-point.

spectrum is reminescent of donors in a magnetic field [15].

As a second example the miniband structure of a coupled quantum dot system
(figure 1(b)) has been calculated. The qualitative nature of the spectrum (figure 4)
is quite similiar to that of the isolated dots. The main difference is that dispersion
is stronger and level clustering is much weaker in this case. Since the magnitude of
the perturbation by the periodic potential depends on the potential height, averaged
over one unit cell, this behaviour is intuitively clear.
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Figure 4. Magnetic minibands for the coupled dot
system at three different values of the magnetic
field. The dispersion is plotted along the ©;-axis
in the 2D quasi-Brillouin zone.
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Figure 5. Magnetic minibands for the antidot sys-
tem at three different values of the magnetic field.
The dispersion is plotted along the ©;-axis in the
2D quasi-Brillouin zone,

The last example is an array of circular antidots of finite height (figure 1(c)). In
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this case the energy levels are shifted from the 2D Landau levels to higher energies
(figure 5) and the minibands exhibit a strong dispersion at low magnetic field. With
increasing magnetic field the minibands become flat and cluster around the 2D Landau
levels. This is for the same reason as in the case of the dots.

We now look at some eigenstates of the antidot system and compare them with
classical trajectories, which are often discussed in this context [4, 6]. Of course there
is no 1:1-mapping between eigenstates of the Hamiltonian in quantum mechanics and
the trajectories of the corresponding classical system, because one has to form wave
packets out of the eigenstates, which are no longer eigenstates of the Hamiltonian.
Nevertheless plotting the probability density and probability current gives an idea of
the nature of the eigenstates, which may then be related to classical trajectories.
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Figure 6. Probability current of the ground state for different ratios of cyclotron length Ae,
lattice constant @ and antidot diameter d. The current is plotted inside one elementary
cell of the lattice, the regions of non-vanishing potential are indicated by circles. The
ground state has been calculated for ©; = @2 = 0.3,

Of particular interest is the question of whether electrons in the lowest miniband
are circulating betwecen four antidots or around a single antidot. It is connected
with the interplay of three Jengths: cyclotron length A, lattice constant a and antidot
diameter d. Classically it is expected that in low magnetic fields the electron circulates
round a single antidot, whereas in high ficlds it is localized between four antidots.
In the quantum mechanical picture the situation is less clear, but a fingerprint of
the classica) behaviour is found, too. In figure 6 the probability current for differcnt
ratios of A, a.and d is plotted. Comparing the situation for different ratios A _/a we
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notice a strong probability current component along the antidot for the lower-field
case (left-hand column in figure 6). In the higher field (right-hand column in figure 6)
the probability current is just circulating between four antidots, corresponding to an
electron on a cyclotron orbit located between the antidots. For values of d/a near
one, where the channels between the electrons are nearly pinched off, the current for
both fields is located between four antidots (last row in figure 6).

Finally two typical wavefunctions of higher minibands are plotted in figure 7. The
upper one may be related to electrons skipping between the dots and the lower one
is typical for higher states localized between four antidots.

Figure 7. Probability density and probability current for states with higher miniband
index: (@) nyp = 5 and (b) nyp = 10. The states have been calculated for (©; =
©2 = 0.3), the magnetic field strength here is 0.15 T. One elementary cell of the lattice
is plotted, the antidots are again indicated by circles.

In conclusion, in this paper a method for calculating the energy spectrum and
eigenstates of lateral surface superlattices in a perpendicular magnetic field has been
developed. The method, which is not restricted to a special shape of the superlattice
potential, has been applied to lattices of isolated quantum dots, coupled quantum
dots and antidots. For comparison with experimental data it represents a flexible
method for calculating the response functions.
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