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Abstract A new quantum mechanical method for calculating the miniband structure 
of lateral surface superlattices in a perpendicular magnetic field is developed. The 
Schrijdinger equation is solved ria expansion in a basis that is well adapted both Lo the 
translational symmetry of the problem and lhe magnetic field. The approach is quite 
similar to the nearly-free-electron approximation in the zero-field case and is capable of 
dealing with arbitrary potenlial shapes. 

1. Introduction 

During the past few years advances in submicron lithography have made it possible to 
prepare lateral superlattices on the surface of high-mobility two-dimensional electron 
systems with lattice constantS of a few hundred nanometres 111. With mean free paths 
of the order of several microns the electrons in these systems may exhibit transport 
properties that are due to the periodic potential rather than to processes of scattering 
by lattice imperfections. As an additional parameter for transport experiments a mag- 
netic field is frequently applied perpendicular to the lateral superlattice. It introduces 
the cyclotron length as a characteristic tunable length scale, which in the interplay 
with the lattice constant is expected to result in typical modifications of the quantum 
mechanical properties. 

Experimentally lateral superlattices have been fabricated by several groups using 
different techniques for imposing different kinds of periodic structures. One limit, the 
formation of isolated electron systems confined in all three dimensions, the so-called 
‘quantum dots’, is in general well unterstood [2]. But if one alters the experimental 
conditions such that the barriers between adjacent dots become lower and the dots get 
coupled more complex features are observed [3]. Also the complementary situation, 
a repulsive potential, leading to ‘anti-dots’, instead of attractive potential ‘islands’ in 
the case of the dots, has been realized [4]. 

The far-infrared experiments [3,4], which show a characteristic two-peak structure 
of dipole-allowed transitions w+ for parabolic quantum dots, exhibit the nature of the 
lateral potential by deviations from this behaviour. Naturally, this can be quite differ- 
ent for dot and antidot arrays and may also depend on the preparation of the lateral 
structure. Deviations of the magnetoconductivity from the usual SDH-oscillations for 
the homogeneous electron system [5] have been interpreted by concepts of non-linear 
classical dynamics in the low-field case [6] or by quantum transport due to formation 
of subbands within each Landau level in the high-field case [7]. The latter has been 
taken as an indication of Hofstadter’s buttertly [SI. 
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Theorctical studies of electrons subject to both a magnetic field and a periodic 
potential have in fact a long history [9]. However, because those studies were directed 
towards the more principal aspects of the problem, they have often been based on very 
simple shapes of the periodic potential, like V(z,  y) = 1; c o s ( K z )  t V, cos( Icy). 

Unfortunately the shape of the potential in real systems is not known. Therefore 
it seems desirable to have a method applicable to a wide range of different potentials. 
The method developed in this paper is capable of dealing with arbitrary shapes of 
the periodic potential. The Schrodinger equation is solved by expanding the solution 
in a basis of symmetry-adapted basis functions. Those functions are not the magnetic 
Wannier functions, which have often been used in the literature [9 ] ,  but eigenfunctions 
to the basic magnetotranslations [lo] of the lattice. 

2. The Hamiltonian 

Ewperimentally, lateral superlattices are often realized by etching and/or gate tech- 
niques. The main effect of both techniques is that they alter the energy of the bottom 
of the conduction band by surface and/or electrostatic band bending periodically in 
the 2-y-plane. This results in a position dependence of the subband energies of 
the underlying heterostructure, described by a phenomenological potential V( r ,  y). 
V(z ,y )  is periodic, with I ,  and I ,  being the primitive translations of the correspond- 
ing Bravais lattice B: 

V(r  + mi, + nl,) = V ( r )  n, n~ integer. 

By taking this approach$ is assumed that the electron motion in the z-y-plane 
is decoupled from the motion in the z-direction. This assumption is justified if the 
lateral potential is weak compared with the confining potential of the heterostructure, 
i.e. only the lowest subband due to the r-confinement is occupied. Going beyond 
this approximation would require a complete, self-consistent solution of both the 
three-dimensional Schrodinger and the Poisson equation with appropriate boundary 
conditions, e.g. for a gate. This has been done for a single isolated quantum dot [Ill, 
but is at present numerically too dilficult for periodic structures. 

Moreover the electron spin and all band structure effects beyond the effective 
mass approximation are neglected. Thus lateral superlattices are described by the 
Hamiltonian 

I f  = ( 1 / 2 m ' ) b t  ( e / c ) A ) ' t  V ( z , y ) .  (1) 

The magnetic field is applied perpendicular to the electron plane and the sym- 
metric gauge for the vector potential is used: 

A =  (B/2)(-y,t ,O).  (2) 

Finally all lengths are normalized with respect to the cyclotron length (A, 1) 
and by introducing the usual inter- and intra-landau-level ladder operators a and b, 
the Hamiltonian may be written as 

H = h w f ( a t a f $ ) t V ( a , b ) .  (3) 

The dependence of the potential on the b-operator indicates the removal of the 
Landau level degeneracy due to the lateral superlattice. 
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3. Magnetotranslations 

In the presence of a magnetic field, translations in the z-y-plane do not commute 
with the kinetic energy operator. But if the field is homogeneous, they obviously map 
the physical system back onto itself, and in fact they are just gauge transformations. 
lb get an operator which represents that symmetry by commuting with the kinetic 
energy, one has to compose a translation with the inverse of the  corresponding gauge 
transformation: 

S ( R )  = e x p ( ( l / f i ) ( R ' b -  R b t ) )  = exp((i/Z)(R x T )  . i ) T ( R )  

with T ( R ) + ( r )  = +(T + R) .  (4) 

The unitary operators S are called magnetotranslations and have been discussed 

In general magnetotranslations, in contrast to ordinary translations, do not com- 
in detail elsewhere [lo]. 

mute with each other. One easily shows the relation 

[S(R,),S(R,)]  = 0 IR, x R,l = 2ru with U integer. (5) 

Physically U counts the number of flux quanta through the parallelogram defined 
by RI and &. For a superlattice system with basic translations I, and 1, this means 
that we have to restrict ourselves to magnetic fields, which fulfil (in SI units) 

B = [h/(eII, x 121)]g, with g, integer. (6)  

In practice this is not very restricting, because for usual lattice parameters the 
spacing between allowed field values is small and can be made smaller by choosing a 
larger unit cell instead of the elementary cell of the lattice. 

Now one can establish the commutation relations for the basic magnetotransla- 
tions of the lattice: 

[S(I,) ,  S(l,)l = [S(I,)> HI = [S ( I2 ) ,  HI = 0. (7) 

Because of the unitarity of the magnetotranslations, all eigenvalues are of modulus 
one and the eigenvalue equations may be written as 

s(I])+ = e''>+ S(I& = eiOa+. ( 8) 

Because of (7) they can be solved simultaneously and the solutions for fixed 0, 
and 0, form a Hilbert space H ( 0 , ,  G2). Since the two primitive magnetotranslations 
commute with the Hamiltonian, the eigenfunctions of the Hamiltonian can be chosen 
in such a way that they belong to one of the X( 0,, 02). Therefore it is sufficient to 
solve the Schrodinger equation in each Hilbert space H(0,, 0,) separately. The two 
phases 0, and 0, play a role analogous to the h e c t o r  in the zero-field case. Energy 
levels exhibit a two-dimensional dispersion E ( 0 , , 0 2 )  . Obviously it is sufficient to 
restrict the range of 0, and 0, to the intelval [-n, n], the first quasi-Brillouin zone. 
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4. Symmetry-adapted funetions 

We look for a basis of H(O, ,O, ) ,  where all elemen& are also eigenfunctions of 
the kinetic part of the Hamiltonian (3). This basis is then well adapted both to the 
translational symmetry and the presence of a magnetic field in the problem. 

We use the set of functions proposed by Ferrari (121. The integer g, defined in 
equation (6) has to be factored into g ,  = p q .  Then a finer lattice than the original 
Bravais lattice is defined by 

c = l , / p  and d = 1 2 / q ,  

In this finer lattice the magnetic flux through one unit cell is prccisely one flux 
quantum. We further define 

m 

with 

P = ( l / p ) ( Q l  + 2x79) and LJ = ( I / q ) ( B Z  + 2 x 4  

nl  E I ,  = IO,. . . , p -  1) and n2 E I ,  = { O , .  . . , q  - 11 

n ~ E { 0 , 1 , 2 , 3 ,  . . .  }. 

4,,L is a Landau eigcnfunction defincd by 

eigcnfunction of the number operator at,: 

= nL+,, and b4,,,L = 0. 
Since magnetotranslations only involve the b ladder operators, +:;**’ is also an 

at,,;;”’ = nL&:*”’ (10) 

and therefore of the kinetic energy. 
The functions $:Fn2 form a complete, orthogonal set of functions in H (el, El2), 

provided that ( p , v )  + (n,x) for all (n l ,  n,) E I, x I,. Their norm may easily be 
evaluated as 

m 

an orthonormal basis in H(Ol,O,) has bcen found. 
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5. Solution of the Schtijdinger equation 

The Schmdinger equation is solved by expanding the solutions in the basis {+:;in2} 

in H(O, ,O, ) .  The numerical crucial point in this method is the evaluation of the 
matrix elements of the periodic potential in the given basis. This has been done to 
a geat extent analytically, thus reducing the integration to summations of rapidly 
convergent series. 

?b take full advantage of the translational symmetly, the periodic potential is 
expanded in a Fourier series 

V ( R )  = v(G)eiG'R 
G€E 

where R is the reciprocal lattice to B. What is then left to do is to calculate the matrix 
elemens (n;,  ni, ntleiG'Rln,, n,, nL), where G is a reciprocal-lattice vector. After 
some algebra it becomes clear that these matrix elements vanish, unless there exist 
two integers M and N for which the following relations hold (G = G1Gl + G2g2 
with g1,a2 primitive translations of R): 

G, = n; - n ,  - M p  

G, = nk - n2 - N q .  

(12) 

(13) 

The non-vanishing matrix elements evaluate to  

with 

and 

In the above equations complex notation is used for two-dimensional vectors. 

6. Results and discussion 

'Ib show the flexibility of the method, calculations for three different systems have 
been done. The model potentials, shown in figure 1, are chosen in such a way that 
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Flgurc 1. Effective polenlials used for 
modelling arrays of (a) isolated quan- 
lum dots, (b)  coupled quantum dots and 
(c) antidots. One elemenary cell of lhe 
quadratic lallice is shown, the lattice con- 
slant is taken to k 500 nm. the polcntial 
depth 5 meV. In (c) the ratio of antidot 
diameter to latlice constan1 is f .  

the systems may he regarded as arrays of isolated quantum dots, weakly coupled 
quantum dots and antidots, respectively. 

For the calculations the effective mass of GaAs (m' = O.OSS5), a quadratic unit 
cell for the lattice with side length a = 500 nm and a potential depth V, of 5 meV 
have been used. These assumptions are realistic in shallow mesa-etched samples [13]. 

For the isolated quantum dots (figure I@)) the minihand structure for three values 
of the magnetic field has been calculated and the results are shown in figure 2. For 
low magnetic fields the spectrum consists of some discrete levels below the lowest 
ZD Landau level and a quasi-continuous spectrum above. This is consistent with the 
resuIts obtained by using a split operator technique on the solution of the time- 
dependent Schrodinger equation [14J. 

The discrete levels correspond to the energy levels of a strictly parabolic dot with 
the same culvature in the minimum. They exhibit no dispersion in 0, because they 
are closely hound in the dot and the wavefunctions of electrons in adjacent dots 
do not overlap. For the minibands in the quasi-continuum, however, dispersion is 
clearly observed a t  low fields. Their eigenstates are extended, due to overlap between 
neighbouring cells. 

At higher magnetic fields the levels in the quasi-continuum cluster nearer and 
nearer to the ZD Landau levels. This is due to reduced Landau level mixing because 
of the wider spacing between adjacent Landau levels and increasing localization of 
the electrons in the magnetic field, which leaves more and more states in regions 
unaffected by the potential. Increasing localization resulting in a decrease of the 
overlap between neighbouring cells is also responsible for the vanishing dispersion at 
higher fields. 

The dependence of the energy levels on the magnetic field for a fixed point near 
the I?-point of the quasiBrillouin zone is plotted in figure 3. In this plot one clearly 
sees the dot like behaviour of the discrete states and the clustering of the quasi- 
continuous level spectrum near the ZD Landau levels. At higher magnetic fields the 
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Flgure 2. Magnetic minibands for the isolated dot 
system at three different values of the magnetic 
field. The dispersion is plotted along the Ql-axis 
in the m quasi-Brillouin zone. lb the left are 
the energy levels of a parabolic dot with the same 
curvature in the minimum plotted, to the right the 
landau levels for V = 0.  

. 

Figure 3. Magnetic field dependence of the energy 
levels of the isolated dot system at a fixed point 
(01 = 0 2  = 0.3) near the r-point. 

spectrum is reminescent of donors in a magnetic field [15]. 
As a second example the miniband structure of a coupled quantum dot system 

(figure l ( b ) )  has been calculated. The qualitative nature of the spectrum (figure 4) 
is quite similiar to that of the isolated dots. The main difference is that dispersion 
is stronger and level clustering is much weaker in this case. Since the magnitude of 
the perturbation by the periodic potential depends on the potential height, averaged 
over one unit cell, this behaviour is intuitively clear. 

Flyre 4. Magnetic minibands for the coupled dot 
system at three different values of the magnetic 
field. The dispersion is plotted along the Q1-axis 
in the w quasiBrillouin zone. 

Figure 5. Magnetic minibands for the antidat sys- 
tem at three different values of the magnetic field. 
The dispersion is plotted along the Q,-axis in the 
2D quasi8rillouin zone. 

The last example is an array of circular antidots of finite height (figure l(c)). In 
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this m e  the energy levels are shifted from the ZD Landau levels to higher energies 
(figure 5) and the minibands exhibit a strong dispersion at low magnetic field. With 
increasing magnetic field the minibands become flat and cluster around the 2D Landau 
levels. This is for the same reason as in the case of the dots. 

We now look at some eigenstates of the antidot system and compare them with 
classical trajectories, which are often discussed in this context (4, 61. Of course there 
is no 1:l-mapping between eigenstates of the Hamiltonian in quantum mechanics and 
the trajectories of the corresponding classical system, because one has to form wave 
packets out of the eigenstates, which are no longer eigenstates of the Hamiltonian. 
Nevertheless plotting the probability density and probability current gives an idea of 
the nature of the eigenstates, which may then be related to classical trajectories. 

... .--,,, . .-..,,. Icq ..,,, 

. . . .  .... = g. 
.I 

-.... <-.,,. 
..,I ,A,,\. 

A.,,,... ,..,,, <.... ......, 
, I , .  . . . . . .  ::::I <.;;j ,,.. . . . . . . .  .,L, 

lower field 

~~ (9' 1 
a -4% 

higher field 
Figure 6. Probabilily current of the ground state [or different ratios of cyclorron length A,, 
latlice " a n t  a and antidot diameter d .  The current is plotled inside one elementary 
cell of the laltice, lhe regions of non.vanishing potential are indicated by circles The 
ground stale has been calculated for QI = Q z  = 0 . 3 .  

Of particular interest is the question of whether electrons in the lowest miniband 
are circulating betwcen four antidots or around a single antidot. It is connected 
with the interplay of three lengths: cyclotron length A,, lattice constant a and antidot 
diameter d. Classically it is expected that in low magnetic fields the electron circulates 
round a single antidot, whereas in high fields it is localized between four antidots. 
In the quantum mechanical picture the situation is less clear, but a fingerprint of 
the classical behaviour is found, too. In figure 6 the probability current for different 
ratios of A,, a.and d is plotted. Comparing the situation for different ratios X,/a we 
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notice a strong probability current component along the antidot for the lower-field 
case (left-hand column in figure 6). In the higher field (right-hand column in figure 6) 
the probability current is just circulating between four antidots, corresponding to an 
electron on a cyclotron orbit located between the antidots. For values of d / a  near 
one, where the channels between the electrons are nearly pinched off, the current for 
both fields is located between four antidots (last row in figure 6). 

Finally two typical wavefunctions of higher minibands are plotted in figure 7. The 
upper one may be related to electrons skipping between the dots and the lower one 
is typical for higher states localized between four antidots. 

Figure 7. Probability densily and probability current for slales with higher miniband 
index: (0) ~ M B  = 5 and (b) ~ M B  = 10. The s l a m  have been calculated for (0, = 
0 2  = 0.3). the magnetic field strength here is 0.15 T One elementary cell of the laitice 
is plalted, lhe anlidots are again indicated by circles. 

In conclusion, in this paper a method for calculating the energy spectrum and 
eigenstates of lateral surface superlattices in a perpendicular magnetic field has been 
developed. The method, which is not restricted to a special shape of the superlattice 
potential, has been applied to  lattices of isolated quantum dots, coupled quantum 
dots and antidots. For comparison with experimental data it represents a flexible 
method for calculating the response functiom. 
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